16 May 2018

Faulkes and colleagues, 2018

Faulkes Z, DeLeon H, Thomas J. 2018. Cloning crayfish cell culture. Poster presentation given at the International Crustacean Congress IX, 22-25 May 2018, Washington, DC, USA. http://www.birenheide.com/ICC2018/program/singlesession.php3?sessid=P, poster P.81.


The parthenogenetic marbled crayfish, Marmorkrebs, is an emerging model organism. For example, it is the only decapod crustacean with a sequenced genome, and several labs have used Marmorkrebs as a model for embryonic development. One difficulty in studying embryonic cells is that eggs contain a large amount of yolk, which can make imaging embryonic cells difficult. We successfully isolated and cultured cells from early stage Marmorkrebs embryos, and confirmed their identity using DNA sequencing. Cellular and molecular tools for use in crayfish are underdeveloped compared to other model organisms, and cultured embryonic cells could provide a new testbed for those techniques.

Keywords: None provided.

09 May 2018

Vogt, 2018b

Vogt G. 2018. Annotated bibliography of the parthenogenetic marbled crayfish Procambarus virginalis, a new research model, potent invader and popular pet. Zootaxa 4418(4): 301-352. https://doi.org/10.11646/zootaxa.4418.4.1


The marbled crayfish Procambarus virginalis is a new obligately parthenogenetic species that was detected in the mid-1990s in the German aquarium trade. Since then it has become a popular pet in many countries throughout the world and a valuable laboratory model for a broad range of biological disciplines. Releases have led to the establishment of wild
populations in several European countries, Madagascar and probably Japan, making marbled crayfish an interesting paradigm of evolutionarily young and ongoing bioinvasions. This article provides an annotated bibliography of the scientific and popular scientific literature on marbled crayfish from its detection until today. Each reference is assigned to a publication format and one or more biological categories. The content is shortly described and its significance for marbled crayfish research and general biology is assessed. Of the 239 references listed 140 (58.6%) deal primarily with laboratory experiments on the biology of marbled crayfish and the establishment and use of marbled crayfish as a research model, 74 (31.0%) with its biogeography, invasions and ecology and 25 (10.4%) with hobby aquarist issues and the pet trade.

Keywords: Crustacea • Decapoda • development • ecology • genetics • morphology • neurobiology • physiology • speciation • stem cell biology • toxicology

08 May 2018

Zeng and Yeo, 2018

Zeng Y, Yeo DCJ. 2018. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: A Southeast Asian case study. Biological Conservation 223: 58-67. https://doi.org/10.1016/j.biocon.2018.04.033


Primary freshwater crabs represent a culturally and ecologically significant component of freshwater habitats globally that has a high percentage of threatened species. Invasive species (especially non-indigenous crayfish) and climate change are not only important standalone threats, but are also expected to compound existing threats (e.g., habitat loss/modification, pollution) and challenge the long-term survival of these decapod crustaceans. This study illustrates the importance of considering these two emerging and growing threats in conservation or management strategies by quantifying (via species distribution models) the individual and aggregated risks of these threats in Southeast Asia, a region with the highest diversity of primary freshwater crabs and a high proportion of imperiled species. Results predicted that most species of crabs (82.1%) will co-occur (and hence interact) with invasive crayfish to a moderate to high degree, and most species (69.2%) will also experience a reduction in suitable climate conditions in the future. In terms of aggregated risk, the results also predict an increased overlap between invasive crayfish and native crabs for three out of the seven species analyzed (namely Procambarus virginalis, Cherax destructor and Orconectes rusticus). Findings from this study provide a quantitatively derived rationale for the development of adaptive regulations and conservation plans in the region to minimize the risk of invasive species in a cost-effective way, thereby enabling the protection of Southeast Asia's natural heritage and its vital ecosystem services.

Keywords: alien species • Cherax • environmental niche model • non-indigenous species • Procambarus • radiative forcing target levels • species distribution model

Oleh and colleagues, 2018

Oleh M, Kyrylo B, Olena K. 2018. Biological and biomechanical principles of the controlling molluscs Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) in reservoirs of strategic importance World Scientific News 99: 71-83. http://www.worldscientificnews.com/wp-content/uploads/2018/04/WSN-99-2018-71-83.pdf


The article presents the results of complex laboratory investigations on the biological and biomechanical ways of control of Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) molluscs in simulated conditions close to the conditions of the cooling pond of the Zaporizhia Nuclear Power Plant. It was determined that molluscs have naturalized in the Zaporizhia Nuclear Power Plant cooling pond, quickly increased their number and created a threat to hydraulic structures. Taking into account biological features of Thiaridae mollusks and technical and ecological features of Zaporizhia NPP, we carried out a series of experiments using biological control measures (the use of predatory species of hydrobionts) and mechanical means for controlling mollusks. Representatives of different taxons of the Animalia Kingdom were selected as predatory species of hydrobionts, which potentially can consume gastropods: Mollusca, Crustaceans and Fish. It has been found experimentally that the use of marbled crayfish Procambarus virginalis (Lyko, 2017), pumpkinseed Lepomis gibbosus (Linnaeus, 1758) and Botia lohachata Chaudhuri, 1912 has not given positive results in the development of measures to control the number of molluscs. Positive results were obtained in a series of experiments with predatory mollusc assassin snail Clea helena (von dem Busch, 1847), but it was noted that in the presence of more accessible feeds, assassin snail Clea helena (von dem Busch, 1847) consumes smaller quantities of Thiaridae mollusks. The most successful results we obtained in experiments with traps for molluscs. We have developed experimental constructions of traps with lower and upper inlets that act as mollusk accumulator and can be installed in the coastal zone of the reservoir and Zaporizhia NPP cooling system channels for reducing the number of reproductive individuals of Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822). The most effective were the traps with the lower inlet to which the mollusks could get faster. In order to attract mollusks to traps, we have conducted studies on the use of feed baits for molluscs. Most effectively, molluscs fell into traps that contained lime feed, feedstock sunflower oil and anise oil. The most effective among mollusks was the bait with the addition of anise oil. During the exposure, traps with anise bait traps accumulated 14.1% of molluscs. The conducted researches can serve as the basis for the development of biomelioration measures aimed at reducing the negative impact of accidental introduction of new species of molluscs into technical reservoirs of strategic importance.

Keywords: Clea helenaMelanoides tuberculataTarebia granifera • Zaporizhia Nuclear Power Plant • assassin snail • biological invasion • cooling pond • red-rimmed melania • thiarids

28 April 2018

Allo or auto? Betting on Marmorkrebs origins

Picture of Bugatti car with text, 'Why not hybrid?'

In a new article in PNAS, James Mallet writes:

An extraordinary recent case is the marbled crayfish Procambarus virginalis, which seems to have originated via a hybrid between two North American Procambarus species and was likely spread via the pet trade. The marbled crayfish is a triploid hybrid, very likely created in captivity, and is entirely parthenogenetic. After escaping from captivity, it has since spread to become invasive in many European countries as well as in Madagascar.

Mallet cites Gutekunst and colleagues (2018) to support this. But they specifically said, “We do not think Marmorkrebs is a hybrid.”

Alternative hypotheses involving allopolyploid formation with P. alleni appear unlikely due to the lack of hybrid morphological features and the considerable genetic differences.

And it’s not just them. Vogt and colleagues (2016) wrote:

The morphological features and microsatellite patterns strongly suggest that marbled crayfish originated by autopolyploidisation and not by hybridisation with a closely related species, which is by far the most frequent cause of triploidy in animals.

There is some overlap in the author lists of Gutekunst et al. (2018) and Vogt et al. (2016). Having the some of the same authors makes it not surprising that the two papers reach the same conclusions. But they are not the only ones. Martin and colleagues (2016) reached the same conclusion:

Martin et al. (2010) suggested that the Marmorkrebs originated directly from sexual P. fallax without hybridization.

Our data tentatively support this conclusion. Based on the assumption of a hybridization between P. fallax and P. alleni, one would expect that the numerically different karyotypes of these two species would have led to a chromosome number higher than that counted in Marmorkrebs. Furthermore, a preliminary comparison of the nuclear protein coding histone H3 gene (H3) and the nuclear elongation factor 2 gene (EF-2) revealed at least seven polymorphic positions within the EF-2 intron that suggest a non-hybrid origin of the Marmorkrebs.

For a very long time, I would have bet money that Marmorkrebs was a hybrid, because so many cases of asexual reproduction trace back to hybridization events. All of the papers above go on to say that, strictly speaking, there is still a very slight possibility that Marmorkrebs is a hybrid. But hybridization isn’t the way to bet any more.


Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F. 2018. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecology & Evolution 2(3): 567–573. https://doi.org/10.1038/s41559-018-0467-9

Mallet J. 2018. Invasive insect hybridizes with local pests. Proceedings of the National Academy of Sciences: in press. https://doi.org/10.1073/pnas.1804081115

Martin P, Thonagel S, Scholtz G. 2016. The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. Journal of Zoological Systematics and Evolutionary Research 54(1): 13-21. http://dx.doi.org/10.1111/jzs.12114

Vogt G, Falckenhayn C, Schrimpf A, Schmid K, Hanna K, Panteleit J, Helm M, Schulz R, Lyko F. 2015. The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biology Open 4(11): 1583-1594. http://dx.doi.org/10.1242/bio.014241

10 April 2018

Maughan, 2018

Maughan M. 2018. Cyclical parthenogenesis in crustaceans. Poster presentation, Utah State University, 12 April 2018. https://digitalcommons.usu.edu/researchweek/ResearchWeek2018/All2018/283/


Apomixis is the replacement of sexual reproduction with asexual reproduction in plants. Some scientists hypothesize that apomixis is caused by genetics that evolved after sexual reproduction and apomixis mutated from sexual reproduction. However, we hypothesize that sexual reproduction and apomixis evolved simultaneously during eukaryogenesis, the evolution of eukaryotic life. We think that most organisms retain the capacity for apomixis and sexual reproduction in their genome. Many taxa, including plants and crustaceans, should have a single genome able to express both sexual and asexual reproduction as long as the correct metabolic signaling is provided to the germline cells. In Professor John Carman’s lab, researchers have successfully induced onset of apomixia in sexual plants. These successes support our hypothesis and suggest that some animals could also have the pathogenesis and sexual reproduction capabilities in their genome. The equivalent of plant apomixis in animals is apomictic parthenogenesis. We focus on cyclical parthenogenesis. In cyclical parthenogenesis animals alternate between sexual and asexual reproduction. Daphnia magna and Procambarus virginalis (marbled crayfish) are both cyclically parthenogenetic. The TOR (rapamycin complex 1) signaling pathway in plants and animals is a regulator of cell growth and it affects the pathway of reproduction. Oxidative stress turns off the TOR signaling pathway and turns SnRK1(SNF1-related kinase 1 in yeast and AMPK in animals) on. SnRK1 makes cells begin the process of sexual reproduction. To test this hypothesis, I will be researching how to switch asexual organisms to reproduce sexually. I will inject the ovaries of crayfish with chemicals designed to alter their glucose levels and place the Daphnia in a solution containing the appropriate chemicals. The presence of an egg sack from the Daphnia and the presence of male crayfish will show the success of the expirement (sic).

Keywords: None provided.

02 April 2018

Neff, 2018

Neff EP. 2018. The Marmorkrebs model. Lab Animal 47(4): 107-107. https://doi.org/10.1038/s41684-018-0030-y


Without abstract. First paragraph:

In his lab at the German Cancer Research Center in Heidelberg, Frank Lyko studies epigenetics, how the environment can change an organism’s phenotype without altering its underlying DNA. About 15 years ago, a colleague introduced him to the marbled crayfish, a triploid, clonal, parthenogenic, and only very recently speciated invertebrate that’s proven to be quite the invasive pest across the globe. At the time, the Marmorkrebs (as it’s known in German) didn’t register in Lyko’s research plans. But recently, he began thinking about alternative models. Classical laboratory animals, like mice, worms, and fruit flies, “always have the same phenotype, and if you induce a genetic mutation you get one aberrant phenotype normally,” he explains. “This is super helpful if you do genetic research but it’s not necessarily good for describing what’s going on in epigenetics.” He tried honeybees, but found them challenging to keep in the laboratory. His lab wasn’t fond of another potential epigenetic model, the African desert locust, either. “These were really big animals and they were always escaping and flying around, so that was a mess,” he recalls. “Then I remembered my old conversation with Günter Vogt.”

Keywords: None provided.