10 April 2018

Maughan, 2018

Maughan M. 2018. Cyclical parthenogenesis in crustaceans. Poster presentation, Utah State University, 12 April 2018. https://digitalcommons.usu.edu/researchweek/ResearchWeek2018/All2018/283/


Abstract


Apomixis is the replacement of sexual reproduction with asexual reproduction in plants. Some scientists hypothesize that apomixis is caused by genetics that evolved after sexual reproduction and apomixis mutated from sexual reproduction. However, we hypothesize that sexual reproduction and apomixis evolved simultaneously during eukaryogenesis, the evolution of eukaryotic life. We think that most organisms retain the capacity for apomixis and sexual reproduction in their genome. Many taxa, including plants and crustaceans, should have a single genome able to express both sexual and asexual reproduction as long as the correct metabolic signaling is provided to the germline cells. In Professor John Carman’s lab, researchers have successfully induced onset of apomixia in sexual plants. These successes support our hypothesis and suggest that some animals could also have the pathogenesis and sexual reproduction capabilities in their genome. The equivalent of plant apomixis in animals is apomictic parthenogenesis. We focus on cyclical parthenogenesis. In cyclical parthenogenesis animals alternate between sexual and asexual reproduction. Daphnia magna and Procambarus virginalis (marbled crayfish) are both cyclically parthenogenetic. The TOR (rapamycin complex 1) signaling pathway in plants and animals is a regulator of cell growth and it affects the pathway of reproduction. Oxidative stress turns off the TOR signaling pathway and turns SnRK1(SNF1-related kinase 1 in yeast and AMPK in animals) on. SnRK1 makes cells begin the process of sexual reproduction. To test this hypothesis, I will be researching how to switch asexual organisms to reproduce sexually. I will inject the ovaries of crayfish with chemicals designed to alter their glucose levels and place the Daphnia in a solution containing the appropriate chemicals. The presence of an egg sack from the Daphnia and the presence of male crayfish will show the success of the expirement (sic).

Keywords: None provided.

02 April 2018

Neff, 2018

Neff EP. 2018. The Marmorkrebs model. Lab Animal 47(4): 107-107. https://doi.org/10.1038/s41684-018-0030-y

Abstract

Without abstract. First paragraph:

In his lab at the German Cancer Research Center in Heidelberg, Frank Lyko studies epigenetics, how the environment can change an organism’s phenotype without altering its underlying DNA. About 15 years ago, a colleague introduced him to the marbled crayfish, a triploid, clonal, parthenogenic, and only very recently speciated invertebrate that’s proven to be quite the invasive pest across the globe. At the time, the Marmorkrebs (as it’s known in German) didn’t register in Lyko’s research plans. But recently, he began thinking about alternative models. Classical laboratory animals, like mice, worms, and fruit flies, “always have the same phenotype, and if you induce a genetic mutation you get one aberrant phenotype normally,” he explains. “This is super helpful if you do genetic research but it’s not necessarily good for describing what’s going on in epigenetics.” He tried honeybees, but found them challenging to keep in the laboratory. His lab wasn’t fond of another potential epigenetic model, the African desert locust, either. “These were really big animals and they were always escaping and flying around, so that was a mess,” he recalls. “Then I remembered my old conversation with Günter Vogt.”

Keywords: None provided.

30 March 2018

Why people can’t take invasive crayfish seriously

In compiling the news coverage and reactions to the Marmorkrebs genome sequence (which is still trickling in), I’ve noticed a common reaction. The story describes Marmorkrebs as an invasive, outlines the problem, and someone shows up in the comments saying something like, “Mmmm. Gumbo!” or “Get the melted butter ready,” or something like that.

Jokes like that show pretty clearly that people think invasive crayfish are a joke, and nothing to worry about. And as much as I love the Non Sequiter cartoon about Marmorkrebs, it also uses the problem for comedy.

“Eat them all” is not an attitude unique to North America:

This novel perspective on invasive species was perhaps most elegantly stated as we made small talk with a taxi driver in Wuhan. As we explained our research through an interpreter, the taxi driver smiled and asked, “Can they really be considered a problem if people eat them?”

This attitude is perhaps more understandable in China, given that “Chinese food” in China means “crayfish” more than General Tso’s chicken. Louisiana red swamp crayfish are the most popular restaurant dish, and that makes for a $22 billion (yes, with a “B”) market.

But there are at least two problems with the “We can eat them” attitude. First, people don’t understand that there are differences in commercial viability. Marmorkrebs are small compared to Louisiana red swamp crayfish, meaning that you are expending more effort for less meat. It’s like saying, “Hey, Asian carp are fish, we can eat fish, no problem,” without realizing that they’re bony, and not many people want to eat carp. (This may not be an insurmountable problem, though.)

Similarly, not everyone wants to eat crayfish. My understanding that in some places, suggesting that people eat crayfish goes over about as well as suggesting people in the United States eat cockroaches.

But the other problem is that while it sounds good in theory, there’s not a lot of evidence that introducing commercial harvest for invasives will get rid of the problem. Barbour and colleagues (2011) looked at the prospect of controlling lionfish by fishing them for food. They concluded:

(C)omplete eradication of lionfish through fishing is unlikely, and substantial reduction of adult abundance will require a long-term commitment and may be feasible only in small, localized areas where annual exploitation can be intense over multiple consecutive years.

A later paper (de Leon and colleagues, 2013) reached similar conclusions:

While removal efforts are effective at reducing the local number of lionfish, recruitment from unfished locations, such as those too deep for recreational diving and at dive sites that are difficult to access, will continuously offset the effects of removal efforts.

Still, some are continuing to investigate this for lionfish (Chapman et al. 2016).

Indeed, creating commerical fisheries for aquatic invasives probably increases the problems, since you now have incentives to perform even more introductions (Nuñez and colleagues, 2012; Pasko and Goldberg 2014), even through the track record is poor. Establishing commericial fisheries for crayfish was one of the main reason North American species were introduced in many European countries decades ago (e.g., Sweden), and they have since realized that they are causing far more problems than they made money.

If we are going to stop introductions of non-native crayfish, we are going to have to convince people that the problem is serious. Jokes about food show they aren’t there yet.

References

Barbour AB, Allen MS, Frazer TK, Sherman KD. 2011. Evaluating the potential efficacy of invasive lionfish (Pterois volitans) removals. PLOS ONE 6(5): e19666. https://doi.org/10.1371%2Fjournal.pone.0019666

Chapman JK, Anderson LG, Gough CLA, Harris AR. 2016. Working up an appetite for lionfish: A market-based approach to manage the invasion of Pterois volitans in Belize. Marine Policy 73: 256-262. http://www.sciencedirect.com/science/article/pii/S0308597X16304857

de León R, Vane K, Bertuol P, Chamberland VC, Simal F, Imms E, Vermeij MJA. 2013. Effectiveness of lionfish removal efforts in the southern Caribbean. Endangered Species Research 22(2): 175-182. http://www.int-res.com/abstracts/esr/v22/n2/p175-182/

Nuñez MA, Kuebbing S, Dimarco RD, Simberloff D. 2012. Invasive species: to eat or not to eat, that is the question. Conservation Letters 5(5): 334-341. https://doi.org/10.1111/j.1755-263X.2012.00250.x

Pasko S, Goldberg J. 2014. Review of harvest incentives to control invasive species. Management of Biological Invasions 5(3): 263–277. https://doi.org/10.3391/mbi.2014.5.3.10

Related posts

Marmorkrebs genome news round-up

External links

Louisiana crayfish: good, bad, and delicious
The economy of crayfish
Non Sequiter cartoon: Crayfish apocalypse
Eat The Enemy: The Delicious Solution To Menacing Asian Carp

Picture from here.

26 March 2018

The crayfish apocalypse

Of over a hundred news articles, blog posts, and other miscellaneous things I have seen on the Internet about Marmorkrebs since the genome paper came out, this Non Sequiter comic by Wiley may be my favourite of all of them. And that includes articles that quoted me or used my Marmrorkrebs picture.

Click here to read it.

Hat tip to James Murray.

22 February 2018

Gutekunst and colleagues, 2018

Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F. 2018. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecology and Evolution 2(3): 567–573. https://doi.org/10.1038/s41559-018-0467-9

Abstract

The marbled crayfish Procambarus virginalis is a unique freshwater crayfish characterized by very recent speciation and parthenogenetic reproduction. Marbled crayfish also represent an emerging invasive species and have formed wild populations in diverse freshwater habitats. However, our understanding of marbled crayfish biology, evolution and invasive spread has been hampered by the lack of freshwater crayfish genome sequences. We have now established a de novo draft assembly of the marbled crayfish genome. We determined the genome size at approximately 3.5 gigabase pairs and identified > 21,000 genes. Further analysis confirmed the close relationship to the genome of the slough crayfish, Procambarus fallax, and also established a triploid AA’B genotype with a high level of heterozygosity. Systematic fieldwork and genotyping demonstrated the rapid expansion of marbled crayfish on Madagascar and established the marbled crayfish as a potent invader of freshwater ecosystems. Furthermore, comparative whole-genome sequencing demonstrated the clonality of the population and their genetic identity with the oldest known stock from the German aquarium trade. Our study closes an important gap in the phylogenetic analysis of animal genomes and uncovers the unique evolutionary history of an emerging invasive species.

Keywords: comparative genomics • evolutionary genetics • invasive species

Vogt, 2018

Vogt G. 2018. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. Journal of Biosciences 43(1): 189-223. https://doi.org/10.1007/s12038-018-9741-x

Abstract

In the last 15 years, considerable attempts have been undertaken to develop the obligately parthenogenetic marbled crayfish Procambarus virginalis as a new model in biology. Its main advantage is the production of large numbers of offspring that are genetically identical to the mother, making this crustacean particularly suitable for research in epigenetics. Now, a draft genome, transcriptome and genome-wide methylome are available opening new windows for research. In this article, I summarize the biological advantages and genomic and epigenetic features of marbled crayfish and, based on first promising data, discuss what this new model could contribute to answering of “big” biological questions. Genome mining is expected to reveal new insights into the genetic specificities of decapod crustaceans, the genetic basis of arthropod reproduction, moulting and immunity, and more general topics such as the genetic underpinning of adaptation to fresh water, omnivory, biomineralization, sexual system change, behavioural variation, clonal genome evolution, and resistance to cancer. Epigenetic investigations with the marbled crayfish can help clarifying the role of epigenetic mechanisms in gene regulation, tissue specification, adult stem cell regulation, cell ageing, organ regeneration and disease susceptibility. Marbled crayfish is further suitable to elucidate the relationship between genetic and epigenetic variation, the transgenerational inheritance of epigenetic signatures and the contribution of epigenetic phenotype variation to the establishment of social hierarchies, environmental adaptation and speciation. These issues can be tackled by experiments with highly standardized laboratory lineages, comparison of differently adapted wild populations and the generation of genetically and epigenetically edited strains.

Keywords: cancer resistance • disease susceptibility • DNA methylation • environmental adaptation • epigenetics • genomics • immunity • marbled crayfish • regeneration • speciation

17 February 2018

Marenkov and colleagues, 2017

Marenkov O, Holoborodko K, Voronkova Y, Gorban V. 2017. Effect of zinc and cadmium ions on histostructure of antennal glands of marbled crayfish Procambarus fallax (Hagen, 1870) f. virginalis (Decapoda). Acta Biologica Universitatis Daugavpiliensis 17(2): 219–224. http://sciences.lv/wp-content/uploads/2018/01/Marenkov.pdf

Abstract

Research results about the effects of cadmium and zinc ions on the histological structure of cells of antennal glands of marbled crayfish Procambarus fallax (Hagen, 1870) f. virginalis
(Decapoda) are presented in the article. It is determined that size of glandulocytes and their nuclei affected by to heavy metals naturally reduces however nuclear-cytoplasmic ratio is stably preserved, which is probably the excretory system adaptive response to the impact of heavy metals ions.

Keywords: cadmium • zinc • marbled crayfish • glandulocytes • Procambarus fallax (Hagen, 1870) f. virginalis